Tunable Weyl and Dirac states in the nonsymmorphic compound CeSbTe
نویسندگان
چکیده
Recent interest in topological semimetals has led to the proposal of many new topological phases that can be realized in real materials. Next to Dirac and Weyl systems, these include more exotic phases based on manifold band degeneracies in the bulk electronic structure. The exotic states in topological semimetals are usually protected by some sort of crystal symmetry, and the introduction of magnetic order can influence these states by breaking time-reversal symmetry. We show that we can realize a rich variety of different topological semimetal states in a single material, CeSbTe. This compound can exhibit different types of magnetic order that can be accessed easily by applying a small field. Therefore, it allows for tuning the electronic structure and can drive it through a manifold of topologically distinct phases, such as the first nonsymmorphic magnetic topological phase with an eightfold band crossing at a high-symmetry point. Our experimental results are backed by a full magnetic group theory analysis and ab initio calculations. This discovery introduces a realistic and promising platform for studying the interplay of magnetism and topology. We also show that we can generally expand the numbers of space groups that allow for high-order band degeneracies by introducing antiferromagnetic order.
منابع مشابه
Creating stable Floquet–Weyl semimetals by laser-driving of 3D Dirac materials
Tuning and stabilizing topological states, such as Weyl semimetals, Dirac semimetals or topological insulators, is emerging as one of the major topics in materials science. Periodic driving of many-body systems offers a platform to design Floquet states of matter with tunable electronic properties on ultrafast timescales. Here we show by first principles calculations how femtosecond laser pulse...
متن کاملSymmetry-protected topological photonic crystal in three dimensions
Topology of electron wavefunctions was first introduced to characterize the quantum Hall states in two dimensions discovered in 1980 (ref. 1). Over the past decade, it has been recognized that symmetry plays a crucial role in the classification of topological phases, leading to the broad notion of symmetry-protected topological phases2. As a primary example, topological insulators3,4 are distin...
متن کاملExperimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb
Topological insulators (TIs) host novel states of quantum matter characterized by nontrivial conducting boundary states connecting valence and conduction bulk bands. All TIs discovered experimentally so far rely on either time-reversal or mirror crystal symmorphic symmetry to protect massless Dirac-like boundary states. Several materials were recently proposed to be TIs with nonsymmorphic symme...
متن کاملNontrivial Berry phase in magnetic BaMnSb2 semimetal.
The subject of topological materials has attracted immense attention in condensed-matter physics because they host new quantum states of matter containing Dirac, Majorana, or Weyl fermions. Although Majorana fermions can only exist on the surface of topological superconductors, Dirac and Weyl fermions can be realized in both 2D and 3D materials. The latter are semimetals with Dirac/Weyl cones e...
متن کاملDirac and Weyl Semimetal in XYBi (X = Ba, Eu; Y = Cu, Ag and Au)
Weyl and Dirac semimetals recently stimulate intense research activities due to their novel properties. Combining first-principles calculations and effective model analysis, we predict that nonmagnetic compounds BaYBi (Y = Au, Ag and Cu) are Dirac semimetals. As for the magnetic compound EuYBi, although the time reversal symmetry is broken, their long-range magnetic ordering cannot split the Di...
متن کامل